
Composable Specifications
for Structured Shared-Memory Communication

Benjamin P. Wood Adrian Sampson Luis Ceze Dan Grossman
University of Washington

{bpw,asampson,luisceze,djg}@cs.washington.edu

Abstract
In this paper we propose a communication-centric approach
to specifying and checking how multithreaded programs use
shared memory to perform inter-thread communication. Our
approach complements past efforts for improving the safety
of multithreaded programs such as race detection and atom-
icity checking. Unlike prior work, we focus on what pieces
of code are allowed to communicate with one another, as
opposed to declaring what data items are shared or what
code blocks should be atomic. We develop a language that
supports composable specifications at multiple levels of ab-
straction and that allows libraries to specify whether or not
shared-memory communication is exposed to clients. The
precise meaning of a specification is given with a formal se-
mantics we present. We have developed a dynamic-analysis
tool for Java that observes program execution to see if it
obeys a specification. We report results for using the tool
on several benchmark programs to which we added specifi-
cations, concluding that our approach matches the modular
structure of multithreaded applications and that our tool is
performant enough for use in development and testing.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—reliability; D.2.5
[Software Engineering]: Testing and Debugging—monitors,
testing tools; D.3.2 [Programming Languages]: Language
Classifications—Concurrent, distributed, and parallel lan-
guages; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about programs—speci-
fication techniques

General Terms Languages, Verification, Reliability

Keywords concurrency, software reliability, bug detection,
annotation, specification, shared memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
With the move to multicore architectures, more and more ap-
plications are being written with multiple threads that com-
municate via shared memory. While many high-level pro-
gramming languages, Java being a canonical example, pro-
vide built-in support for shared memory, developers still
struggle to build robust and effective multithreaded pro-
grams. On the one hand, shared memory provides a sim-
ple abstraction because inter-thread communication is im-
plicit, so programmers need not move data explicitly. On the
other hand, a key reason why shared-memory programs are
so difficult to write and understand is precisely that inter-
thread communication—or its absence—is implicit. The vast
amount of programming-languages research on static and
dynamic analyses to detect programming errors such as data
races, deadlocks, and atomicity violations has helped to ad-
dress this problem.

In this work, we provide a new and complementary ap-
proach to specifying and checking multithreaded safety
properties. We believe our specifications more directly
match the code structure of programs. Prior work has fo-
cused either on data invariants, such as object o1 is thread-
local or object o2 is always protected by lock l, or on iso-
lation invariants, such as statement s appears to execute
atomically. We focus on code-communication invariants,
such as if method m1 writes to memory, another thread will
read that write only when executing m2 or m3. For exam-
ple, a partial specification for a queue library could state
that writes by enqueue should be read only by enqueue

(for the queue size) or dequeue (for the size and the data).
To keep specifications simple, we do not describe what
data is communicated between threads, only which meth-
ods communicate between threads. In this way, our new
communication-centric approach is complementary to ex-
isting approaches. In a sense, this captures some of the ex-
plicitness of a message-passing model while preserving the
conveniences of shared memory.

An analysis tool can then check these specifications. In
this work, we develop a dynamic-analysis (i.e., debugging)
tool to determine if a program execution violates the pro-
gram’s specification. For the example above, this checking

would ensure that the queue abstraction is not violated via
unexpected inter-thread communication.

A naive implementation of this approach to specification
and checking would work as follows: For every method m,
have developers list every methodm′ that can read data writ-
ten by m when m and m′ run in different threads. The dy-
namic analysis would then record the relevant metadata with
each write and check it for each read. There are several rea-
sons this description is naive, and overcoming these chal-
lenges is the primary research contribution in our design:

• Method calls: Methods often use callees to perform the
actual writes and reads of shared memory. We use a
notion of “inlining” in our specifications to indicate that
memory accesses are performed on behalf of the caller.
• Conciseness: If many methods all communicate with

each other, the specifications could suffer a quadratic
blow-up. A notion of communication “groups” avoids
this problem.
• Local specifications: Modern applications are too large

for anyone to have a single global view of all inter-
thread communication. We design method annotations
that need to describe communication only within a con-
ceptual module boundary.
• Layered communication: Specifications must capture the

intuition that communication can be described at multi-
ple levels of abstraction. For example, a producer may
pass data to a consumer via a queue library. We can spec-
ify and check communication at the producer/consumer
level and the queue level simultaneously. Naturally, our
approach supports an arbitrary number of layers.
• Encapsulated communication: Libraries often perform

communication that is abstracted away from clients. For
example, inside a queue library dequeue communicates
to enqueue (via the queue-size field), but the specifi-
cations used to check clients of the library should not
consider this communication. We define “communication
modules” and “interface groups” to address this essential
abstraction issue.

Overall, the specification language has several essential, sub-
tle, and synergistic features. We motivate these features with
canonical examples and define them precisely with a for-
mal semantics. This semantics formally describes when a
dynamic memory operation violates the specification of al-
lowed communication.

We have also implemented a real dynamic checker that
processes specifications written as Java annotations and uses
Java bytecode-instrumentation to perform checking. As will
be clear after describing our specification language, check-
ing in the general case requires storing the call-stack with
each memory write and comparing it to the call-stack at each
memory read. By storing only the portion of the call-stack
relevant to a program’s specifications and aggressively us-

ing memoization for everything related to call-stack check-
ing, our tool can run programs with an overhead of approx-
imately 5–10x for most programs—too slow for deployed
software, but acceptable for a debugging tool. We describe
how to use the tool to identify a program’s communication
and how to use it interactively to help develop specifications
for “legacy” (already written, but unspecified) programs.

We have evaluated our tool by annotating small programs
from the Java Grande benchmark suite as well as three large
applications from the DaCapo suite. We measure the pre-
cision and conciseness of annotations as well as our tool’s
performance. We conclude that specifying legacy applica-
tions is difficult but informative, and we believe that co-
developing new applications and their specifications will be
even more helpful.

In summary, our contributions are:

• A new communication-centric approach to specifying
shared-memory communication
• A specification language that naturally supports modular-

ity and shared-memory communication at multiple layers
of abstraction
• A formal semantics for our language
• A dynamic checker that is performant as a debugging tool
• An evaluation of our language and checker on benchmark

programs

The rest of this paper proceeds as follows. The next sec-
tion presents an example to motivate our communication-
centric approach and to distinguish it from other approaches.
Section 3 describes our specifications and additional ex-
amples. Section 4 provides a formal semantics of speci-
fication checking to remove any ambiguity regarding the
meaning of our modular specifications. Section 5 describes
our dynamic-analysis tool for Java. Section 6 evaluates our
tool on benchmark applications we annotated. Finally, Sec-
tions 7, 8, and 9 discuss future work, related work, and con-
clusions, respectively.

2. Illustrative Example
In this section, we use a short example to give a basic sense
of our communication-centric specifications and how they
complement other approaches. This section does not present
the full specification language nor does it provide precise
definitions.

The Code. The code skeleton for our example appears
in Figure 1. It depicts a hypothetical image-rendering ap-
plication where we imagine the render method was re-
cently changed to parallelize the application so that each of
nthreads threads now processes an equal fraction of the
image’s pixel rows. (Calls to render by each thread are not
shown.) We further assume a separate thread initiates the
rendering and then calls getImage to obtain the result. The

@Group("Image")

public class Renderer {

volatile int curLine;

final int totalLines;

ConcurrentMap<Integer,Pixel[]> outputImage;

// Render line (nthreads * n + tid) for every n.

@Writer({"Image"})

void render(int tid, int nthreads) {

for (curLine = tid;

curLine < totalLines;

curLine += nthreads)

outputImage.put(curLine, expensiveCall(...));

}

// Return after rendering is finished

@Reader({"Image"})

ConcurrentMap<Integer,Pixel[]> getImage() {

while (curLine < totalLines) /*spin*/ ;

return outputImage;

}

}

Figure 1. A simple concurrency bug that can be caught
using code-centric communication specification.

getImage method observes the curLine field in order to
wait for rendering to finish.

Unfortunately, the naive parallelization of the code intro-
duced a bug: curLine is a field now shared among the calls
to render, leading to potentially wrong output and loop con-
ditions.

Our Specifications. Figure 1 also includes the method an-
notations we use to specify the allowed inter-thread commu-
nication. Overall, these specifications indicate that getImage
can read memory written by render. We place no restric-
tions on intra-thread communication; we always mean that
the read takes place in a different thread from the write. Be-
cause the specifications do not allow render to read mem-
ory written by render, any execution that called render

from multiple threads would violate the specification (via
curLine) and our dynamic analysis would report an error.

Because our specification language was designed for
larger programs, annotations use several features that are
needed less for tiny examples. First, rather than specify
directly the write-to-read communication from render to
getImage, we define a communication group (Image) and
specify that render is a write-member of the group (but cru-
cially not a read-member) and getImage is a read-member.
Second, the group itself is (implicitly) private, meaning the
communication it specifies is not propagated to callers out-
side of the module (given our Java substrate, we by default
equate packages with modules for our purposes). That way,
a caller of a method like createScene (not shown) need
not be aware that the callee is using concurrency.

The use of a ConcurrentMap in our example provides
another motivating example for distinguishing communi-

cation internal to a module from external communication.
Internally, concurrent calls to put do potentially commu-
nicate (e.g., if the keys are the same, the later call must
detect this by reading shared memory internal to the data
structure and overwrite the first mapping). But external
clients should “see” shared-memory communication only
from put to get (and similar methods). Modular specifica-
tions for ConcurrentMap would make this distinction (see
Sections 3.4 and 3.5); no additional annotations are needed
for callers outside the library.

Other Approaches. In many cases, our specifications may
detect the same concurrency errors as other approaches such
as race detectors and atomicity checkers, which is interesting
in and of itself since what we are specifying is fundamentally
different. In other cases, the errors detected are complemen-
tary. In fact, for our example, these approaches are unlikely
to identify the problem:

• Race detectors: The program has no data race. The pro-
grammer correctly declared curLine as volatile to
allow the asynchronous polling in getImage. Unfortu-
nately, this masks the higher level race in render. The
accesses to the concurrent map are properly synchronized
by the library implementation.
• Atomicity checkers: Calls to render are not necessar-

ily atomic, but they are also not atomic in a correct ver-
sion of the code. Since each call to render makes sev-
eral calls to outputImage.put, mutating the concurrent
map, these put operations may interleave when multi-
ple threads run render concurrently, meaning render

is not strictly atomic. render is only atomic at a higher
level of abstraction that accounts for the fact that calls
to outputImage.put with distinct keys commute with
each other. Therefore, an atomicity checker reporting that
render is not atomic is not helpful; it does not distin-
guish correct from incorrect code.

3. Communication Specifications
In this section we present the fundamental concepts of inter-
thread communication we use and how to specify them, re-
vising our definitions as we introduce each new concept.
Section 3.1 first gives a simple definition of what it means for
one method to communicate to another, in terms of dynamic
memory operations. It then considers naive approaches for
specifying all possible communication. We use these ob-
servations to motivate communication inlining (Section 3.2)
and communication groups (Section 3.3). These two con-
cepts suffice for annotating small programs, but larger pro-
grams benefit from modular specifications, using features
presented in Sections 3.4 and 3.5. Table 1 summarizes the
main concepts our specifications embody.

Concept Purpose Section
Communication inlining Methods that perform communication solely on behalf of their callers are allowed

to communicate whenever their callers are.
3.2

Communication groups Concisely specify many related communicating method pairs. 3.3

Communication modules Build communication abstractions to avoid whole-program specifications. 3.4

Stack segments Enforce communication abstractions by partitioning each communicating call
stack to isolate communication in distinct modules.

3.4

Interface groups Encapsulate or expose communication at module boundaries. 3.5

Table 1. Overview of communication specification concepts presented in this paper.

3.1 Method Communication
We consider inter-thread communication only. If thread tw
executes a memory write operation in the dynamic scope of
a call to some method mw and the result of this operation is
later read by a memory read operation executed in the dy-
namic scope of a call to method mr by a different thread
tr, then we say that mw communicates to mr. (The same
principles apply to synchronization: when a thread acquires
a lock last released by another thread, communication oc-
curs.) Generalizing to nested method calls, it is clear that
every method on the call stack of tw at the time of its write
operation communicates to every method on the call stack of
tr at the time of its read operation.

A key insight in this definition is that the communi-
cation effects of memory and synchronization operations
are dynamically—not statically—scoped. A method m may
communicate through a memory operation in m or any tran-
sitive callee of m. This distinction captures a common id-
iom that is not specific to shared-memory programs: many
methods execute memory operations on the behalf of others.
(We will exploit this relationship further to develop modular
communication abstractions in Section 3.4.)

For example, consider the simple vector implementation
outlined in Figure 2. Clients are responsible for synchroniz-
ing access to the vector. The add method calls Util.expand
to expand the underlying array if it is already full when try-
ing to add a new item. Assume one thread calls add and trig-
gers an expansion with expand, which reads all the items in
the current array and writes them into a new larger array be-
fore add writes an item into the new array. Next, if another
thread calls get, requesting a different index than that of the
newly added item, it reads an element in the array, reading
the result of a memory write operation executed in expand.
This single write-read pair causes both expand and add to
communicate to get, since the write operation executed in
the dynamic scope of both methods.

Naive Approaches to Specification. Two naive ways to
specify communication are immediately obvious from our
definition of communication. The first is to specify every
pair of call stacks that is allowed to communicate. Although
this approach gives fully context-sensitive precision to speci-

@Group("Vector")

class SimpleVector {

Item[] elements = new Item[10];

int size = 0;

@Writer({"Vector"}) @Reader({"Vector"})

void add(Item item) {

if (size == elements.length)

elements = Util.expand(elements);

elements[size++] = item;

}

@Reader({"Vector"})

Item get(int i) {

return elements[i];

}

@Writer({"Vector"}) @Reader({"Vector"})

Item replace(int i, Item item) {

Item old = elements[i];

elements[i] = item;

return old;

}

...

}

class Util {

static Item[] expand(Item[] array) {

Item[] tmp = new Item[array.length * 2];

for (int i = 0; i < array.length; i++)

tmp[i] = array[i];

return tmp;

}

}

Figure 2. A simple vector implementation.

fications, it would be combinatorial in size and would yield a
whole-program specification, clearly a non-starter. The sec-
ond approach is to enumerate all pairs of methods that are
allowed to communicate. A memory read operation is valid
under such a specification when for all methods mw on the
call stack at the last write to its target and all methods mr on
the call stack at the read, (mw,mr) is in the specification.
While this approach is less expensive than enumerating pairs
of call stacks, it yields whole-program specifications that are
still quadratic in size. In the remainder of this section, we

harness several important observations on program and com-
munication structure to implement specifications that over-
come the limitations of these naive specifications.

3.2 Communication Inlining
Many methods communicate only incidentally, when their
callers use them to operate on shared data. For exam-
ple, there is nothing meaningful about communication per-
formed by Util.expand (introduced in Section 3.1 and
shown in Figure 2) except in the context of its callers. While
it is obvious that a useful specification must allow com-
munication between expand and the vector get method,
a specification that explicitly declares communication be-
tween expand and get is misleading and unwieldy outside
the vector implementation. The specification would likely
need pairs containing expand and many other methods.

A better way to understand communication in expand is
that expand is allowed to communicate whenever its caller
is. We refer to this as communication inlining. Communica-
tion due to memory operations in expand is simply treated
as though expand is inlined into its caller.

Methods that communicate only on behalf of their callers
are so prevalent that all methods are communication-inlined
by default unless the specification places explicit restrictions
on their communication. In practice, this convention alone
has a significant simplifying impact on the complexity of a
communication specification. In the vector implementation,
for example, the naive pairwise specification requires that
expand communicate nearly everywhere add does. Leaving
expand inlined removes the need for all these extra pairs.

In the remainder of this paper, when we refer to a stack
or a call stack, we mean the version with all inlined methods
removed. Inlining yields an interesting property of specifica-
tions: the specification in which all methods are inlined al-
lows all communication in a program. Since the call stack is
conceptually empty at every communicating write and read
operation, the set of methods that communicate as a result is
empty. This property becomes particularly useful for devel-
oping specifications incrementally once we introduce more
modular specification features in Section 3.4.

3.3 Communication Groups
Programs often contain sets of methods where all or nearly
all pairs of methods within the set communicate. The vec-
tor implementation in Figure 2 is a prime example of this
pattern. The three methods shown, in addition to others that
are omitted (e.g., contains, find, and remove), commu-
nicate with each other (through the elements array and the
size field). For a set of n related methods like this, a naive
pairwise specification would include O(n2) annotations.

The Communication Group Primitive. The communica-
tion group is the basic unit of a communication specifica-
tion, and serves to express many communicating pairs in a
set of related methods concisely. A group G = (W,R) is a

pair of the set W of the group’s writer methods and the set
R of its reader methods, representing the set of pairs in the
cross product W × R. The writers and readers of a group
are collectively referred to as its members. Separating the
two types of members facilitates the expression of common
patterns where certain methods should read values written
by others in the group but should not write values that the
others may read (or vice versa).

The @Group, @Writer, and @Reader annotations in the
vector implementation are the Java annotation equivalent of
the following group:

GVector = ({add, replace}, {add, get, replace})

The get method is a reader but not a writer in this group.
For convenience reasons, our Java specifications use decen-
tralized notation: @Group("Vector") declares a group by
name; each method is annotated as a writer or reader in zero
or more groups:

@Writer({"Vector"}) @Reader({"Vector"})

Checking the communication resulting from a memory
read operation against a specification is simple to define:

Definition 1 (Valid Simple Communication). A read of x is
always valid if x was last written in the same thread. If x
was last written by a different thread tw, then it is valid for
a thread tr to read x if for all methods mw that were on tw’s
call stack when it wrote x and all methods mr on tr’s call
stack when it reads x there exists some group (W,R) in the
specification such that mw ∈W and mr ∈ R.

3.4 Modularity: Communication Modules
Specifications composed of the communication inlining and
group primitives suffice for simple programs, but for larger
programs it is natural to specify communication at multi-
ple layers of abstraction. Consider the simple producers-
consumers pipeline sketched in Figure 3. Producer threads
(not shown) call produce to produce items and enqueue
them in a bounded buffer, and consumer threads (also not
shown) call consume to dequeue and process items for the
next stage of the pipeline.

Communication in this program occurs at two levels
of abstraction. At a low level, the bounded buffer meth-
ods enqueue and dequeue communicate through a shared
buffer representation:

GBuffer = ({enqueue, dequeue}, {enqueue, dequeue})

At a higher level, produce communicates to consume in
the pipeline by enqueueing items in a bounded buffer from
which consume later dequeues them:

GPipe = ({produce}, {consume})

However, since the bounded buffer’s size field is both
read and written when produce calls enqueue and when

consume calls dequeue, then, for example, consume may
communicate to produce, so we must settle on the following
specification until we introduce encapsulation in Section 3.5:

GPipe = ({produce, consume}, {produce, consume})

With only inlining and groups, we are stuck with three
unsatisfactory specifications:

1. Specify only the low-level bounded-buffer abstraction by
inlining the pipeline methods;

2. Specify only the higher-level pipeline abstraction by in-
lining the bounded buffer methods; or

3. Specify that all four methods are writers and readers in a
single group that lacks any notion of abstraction at all:

GPipe = ({produce, consume, enqueue, dequeue},
{produce, consume, enqueue, dequeue})

To specify communication at multiple levels of abstraction,
we introduce communication modules.

The Communication Module Primitive. A communica-
tion module consists of a set of related methods and a set of
groups whose members are drawn from these methods. The
methods in a module interact with each other and perform
communication described by the module’s groups to im-
plement a communication abstraction such as the bounded
buffer. The pipeline program in Figure 3 has two mod-
ules, which are aligned by default with Java packages. Ex-
plicit annotations of arbitrary modules are also supported;
in this case the default suffices. The module Mp contains
the methods and groups for the item processing pipeline,
and the module Mb contains the methods and groups for the
bounded buffer:

Mp = ({produce, consume}, {GPipe})
GPipe = ({produce, consume}, {produce, consume})
Mb = ({enqueue, dequeue}, {GBuffer})

GBuffer = ({enqueue, dequeue}, {enqueue, dequeue})

Section 3.5 discusses the @InterfaceGroup annotation.
The levels of communication abstraction in the pipeline

program are well aligned with the program representation,
but we must map them clearly to the dynamic communica-
tion behavior of the program as well. Recall our description
in Section 3.3 that when the result of a write operation is read
by a read operation in another thread, all methods on the call
stack at the write operation communicate to all methods on
the call stack at the read operation. This definition assumes
a single monolithic communication abstraction, so we now
extend it to support modularity. To support layered abstrac-
tions, we divide communicating stacks into segments corre-
sponding to each layer.

A stack segment is a maximal contiguous sequence of
methods on a single call stack that all belong to the same

package p;

@Group("Pipe")

class ItemProcessingPipeline {

b.BoundedBuffer pipe = new b.BoundedBuffer();

@Writer({"Pipe"})

void produce() {

...; pipe.enqueue(...); ...

}

@Reader({"Pipe"})

void consume() {

...; ... = pipe.dequeue(); ...

}

}

package b;

@InterfaceGroup("BufferClient")

@Group("Buffer")

public class BoundedBuffer {

Item[] buffer = new Item[10];

int size = 0;

...

@Writer({"Buffer", "BufferClient"})

@Reader({"Buffer"})

public synchronized void enqueue(Item i) {

while (size == buffer.length) wait();

buffer[...] = i;

size++;

notifyAll();

}

@Writer({"Buffer"})

@Reader({"Buffer", "BufferClient", })

public synchronized Item dequeue() {

while (size == 0) wait();

size--;

notifyAll();

return buffer[...];

}

}

Figure 3. A pipeline application that uses a simplified
bounded buffer to communicate between stages.

module. As an example, Figure 4(a) shows the segmented
call stacks at the time of a pair of write and read operations in
the pipeline program. On the writer stack, the lower segment,
consisting of enqueue, belongs to the module Mb , while
the upper segment, consisting of produce, belongs to Mp .
The reader stack has corresponding segments, containing
dequeue and consume, respectively.

The fact that the segments in these two communicating
stacks segments align by module is key. We say that two
stacks Sw and Sr have equivalent segmentations if both
stacks have n segments and for all i ∈ 1 . . . n the ith segment
on Sw belongs to the same module as the ith segment on Sr.
Together, the ith segments on a pair of communicating call
stacks with equivalent segmentations form a layer of com-
munication abstraction. When two communicating stacks do
not have equivalent segmentations, either the communica-

consumeMp

Mb

writer reader

dequeue

produce

enqueue

2

1

2

1

(a) Communication exposed by Mb

produce

Mb

writer reader

enqueue

consume

dequeue

2

1

2

1

(b) Communication encapsulated by Mb

Figure 4. Segmented call stacks for a communication in the
pipeline program from Figure 3. Each box is a segment. In
this example all segments have exactly one method.

tion is in error, or the specification is in error and the mis-
alignment of segments should be resolved by inlining more
methods (recall that stacks contain no inlined methods).

Definition 2 (Valid Modular Communication). A memory
write operation is allowed to communicate to a memory
read operation if the stack at the write operation and the
stack at the read operation have equivalent segmentations
and for each segment on the writer stack, all methods in the
segment are allowed to communicate to all methods in the
corresponding segment on the reader stack, established by
writer-reader group membership, as in Definition 1.

Thus the pair of stacks in Figure 4(a) represents a valid
communication, since enqueue is allowed to communicate
to dequeue according toGBuffer and produce is allowed to
communicate to consume according to GPipe .

Communication modules express communication ab-
stractions naturally without specifying extraneous communi-
cation across abstraction boundaries. Furthermore, modules
allow for incremental and composable specifications. Any
program may use the bounded buffer implementation with-
out any additional specification, leaving all other methods
inlined. The bounded buffer is still checked for valid com-
munication without placing restrictions on communication
performed in the rest of the program.

3.5 Encapsulation: Interface Groups
With inlining, groups, and communication modules, we are
still unable to express the ideal specification for the pipeline
abstraction, reflecting our intuition that produce communi-
cates to consume and no other communication is possible:

GPipe = ({produce}, {consume})

The missing link is the encapsulation of communication
from dequeue to enqueue (via the size field and the this
lock) in the bounded buffer module. To encapsulate commu-
nication in modules, we introduce interface groups.

The Interface Group Primitive. Interface groups are a
primitive for communication encapsulation in modules. We
extend communication modules to include a set of interface
groups in addition to their member methods and communi-
cation groups. Like communication groups, interface groups
are composed of writer and reader methods within the mod-
ule. While communication groups describe what communi-
cation is allowed among methods in the module, interface
groups describe what communication is exposed to external
callers of the module’s methods.

Returning to the pipeline example, we declare an inter-
face group for the bounded buffer:

@InterfaceGroup("BufferClient")

We annotate enqueue as a writer and dequeue as a reader
in this group, meaning that communication from enqueue
to dequeue will be exposed to their callers, but all other
communication (e.g., from dequeue to enqueue) is encap-
sulated by the module and not exposed to callers. The result
yields a clean interface for the bounded buffer and the intu-
itive specification for the pipeline:

Mp = ({produce, consume}, {GPipe}, ∅)
GPipe = ({produce}, {consume})
Mb = ({enqueue, dequeue}, {GBuffer}, {IBufferClient})

GBuffer = ({enqueue, dequeue}, {enqueue, dequeue})
IBufferClient = ({enqueue}, {dequeue})

At the pipeline level, we can now regard the bounded
buffer just as we do memory. An enqueue operation and
a dequeue operation may result in communication just as
a write operation and read operation would. Alternatively,
memory may now be regarded as simply one more lowest
layer of communication abstraction with an interface dictat-
ing that the “write location method” (i.e., writes) communi-
cates to the “read location method” (i.e., reads).

We extend Definition 2 to define when a communication
violates a specification in the presence of encapsulation:

Definition 3 (Valid Communication). We say that communi-
cation is encapsulated by a corresponding pair of segments
if the pair of segments are at the roots of their stacks or if no
interface group contains the deepest (caller-most) method in
the writer segment as a writer and the deepest method on the
reader segment as a reader.

Communication between two stacks Sw and Sr is allowed
by a specification if there exist stack prefixes S′w and S′r
composed of segments 1 . . . k of Sw and Sr, respectively,
such that communication is encapsulated by the kth pair of
segments and communication from S′w to S′r is allowed by
Definition 2.

When dequeue communicates to enqueue, the commu-
nication is encapsulated by module Mb. As shown in Fig-
ure 4(b), the communication is not exposed aboveMb’s layer
on the two stacks; even though consume is not allowed to

communicate to produce, this communication is valid. In
this case, it happens that the entire stacks have equivalent
segmentations, even above the encapsulation boundary. In
general, however, this is not required.

In reality, some communication abstractions, such as
those involving callbacks, do not map so clearly to layered
abstractions. Callbacks may cause communication between
a stack with direct control and a stack with inverted control
that has an “extra” segment for the callback caller at its root.
While not a perfect match, we find that inlining callback sys-
tems is a reasonable way to address this pattern. We discuss
one example in Section 6.3.

4. Formal Semantics
In this section we present a formal semantics for simple
multithreaded programs to gain a precise definition of when
a program execution satisfies or violates a communica-
tion specification, and briefly discuss salient properties of
communication-checked programs. We observe that shared-
memory communication has a very restricted interaction
with program semantics: only memory accesses and method
entry and exit are relevant. As a result, we use a simplified
view of the execution of multithreaded programs, in which
each thread is reduced to a trace of operations on global
and local state, eliding details that do not affect inter-thread
communication.

Our formalization has three key parts. The first describes
a simple operational semantics for the execution of multi-
threaded programs. The second part is an operational se-
mantics for the execution of communication-checked multi-
threaded programs that effectively instruments the simple se-
mantics with the necessary bookkeeping and checking. This
instrumented semantics is defined in terms of the third com-
ponent of the semantics: a separate judgment that captures
the semantics of when a dynamic memory write operation is
allowed to communicate to a dynamic memory read opera-
tion, based on the call stacks when the operations occurred.

4.1 Standard Multithreaded Semantics
A multithreaded program is a set of threads executing con-
currently, each identified by a unique identifier t and accom-
panied by a thread state π, representing all thread-local stor-
age and state information. The thread state store θ maps each
thread’s identifier to its state. The threads share a heap that
maps each variable x to a value v and each lock l to the iden-
tifier of the thread that holds it, or ⊥ if no thread does.

A program state σ = (H, θ) is comprised of a heap
and a thread state store. Threads change the program state
by performing operations a that update the heap and the
thread state. These operations are reading from or writing
to a shared variable x in the heap (rd(x, v) and wr(x, v)), ac-
quiring or releasing a lock l (acq(l) and rel(l)), and entering
or exiting a method m (enter(m) and exit(m)).

Programs:

Thread ID t Thread State π

Method ID m Variable x

Lock l Value v

Address p ::= x | l Holder ls ::= t | ⊥

Heap H ::= · | H,x 7→ v | H, l 7→ ls

Thread Map θ ::= · | θ, t 7→ π

State σ ::= (H, θ)

Operation a ::= wr(x, v) | rd(x, v) | acq(l) | rel(l)
| enter(m) | exit(m)

Instrumentation:

Shadow Stack S ::= · | S,m
Instrumented Thread Map Θ ::= · | Θ, t 7→ (π, S)

Last Writer Map φ ::= · | φ, p 7→ (t, S)

Instrumented State Σ ::= (H,φ,Θ)

Specifications and checking:

Method Set µ,R,W ::= {m1, . . . ,mn}
Stack Segment Ŝ ::= {m1, . . . ,mn}

Group G ::= (W,R)

Group Set γ ::= {G1, . . . , Gn}
Module M ::= (µ, γC , γI)

Specification Γ ::= {M1, . . . ,Mn}

Figure 5. Domains.

Operations a executed by thread t may update the heap
as shown in the judgment H; t; a → H ′ in Figure 6. Reads
and writes act as expected; lock acquire and release update
the lock’s heap entry to reflect its holder or its unheld sta-
tus. Method entry and exit have no effect on the heap. We
represent constraints on the possible steps a thread can take,
such as program order, control flow, and data flow, by a re-
lation Program over thread identifiers, initial thread states,
operations, and the resulting thread states. Thread t, starting
in state π, can execute operation a, ending in state π′ when
Program(t, π, a, π′) holds.

A program can step from state σ to σ′ by nondeterministi-
cally selecting a thread to perform an operation that satisfies
the Program relation and can execute on the current heap,
as shown in the judgment Program ` σ → σ′ in Figure 6.

4.2 Communication-Checked Semantics
To check communication in a program against a specifica-
tion Γ, we instrument the standard multithreaded semantics

H; t; a→ H ′

WRITE

H; t;wr(x, v)→ (H,x 7→ v)

READ
H(x) = v

H; t; rd(x, v)→ H

ACQUIRE

H(l) = ⊥
H; t; acq(l)→ (H, l 7→ t)

RELEASE
H(l) = t

H; t; rel(l)→ (H, l 7→ ⊥)

ENTER

H; t; enter(m)→ H

EXIT

H; t; exit(m)→ H

Program ` σ → σ′

STEP
Program(t, θ(t), a, π′) H; t; a→ H ′

Program ` (H, θ)→ (H ′, (θ, t 7→ π′))

Figure 6. Operational semantics for multithreaded programs.

Γ ` φ; t;S; a⇒ φ′;S′

INS ENTER
(µ, γC , γI) ∈ Γ m ∈ µ

Γ ` φ; t;S; enter(m)⇒ φ;S,m

INS EXIT
(µ, γC , γI) ∈ Γ m ∈ µ

Γ ` φ; t;S,m; exit(m)⇒ φ;S

INS INLINED ENTER
∀(µ, γC , γI) ∈ Γ . m /∈ µ

Γ ` φ; t;S; enter(m)⇒ φ;S

INS INLINED EXIT
∀(µ, γC , γI) ∈ Γ . m /∈ µ

Γ ` φ; t;S; exit(m)⇒ φ;S

INS WRITE

Γ ` φ; t;S;wr(x, v)⇒ (φ, x 7→ (t, S));S

INS THREAD-LOCAL READ
φ(x) = (t, S′)

Γ ` φ; t;S; rd(x, v)⇒ φ;S

INS COMMUNICATING READ
t 6= t′ φ(x) = (t′, S′) Γ ` S′ ; S

Γ ` φ; t;S; rd(x, v)⇒ φ;S

INS RELEASE

Γ ` φ; t;S; rel(l)⇒ (φ, l 7→ (t, S));S

INS THREAD-LOCAL ACQUIRE

φ(l) = (t, S′)

Γ ` φ; t;S; acq(l)⇒ φ;S

INS COMMUNICATING ACQUIRE

t 6= t′ φ(l) = (t′, S′) Γ ` S′ ; S

Γ ` φ; t;S; acq(l)⇒ φ;S

Program; Γ ` Σ⇒ Σ′

CHECKED STEP
Θ(t) = (π, S) Program(t, π, a, π′) H; t; a→ H ′ Γ ` φ; t;S; a⇒ φ′;S′

Program; Γ ` (H,φ,Θ)⇒ (H ′, φ′, (Θ, t 7→ (π′, S′)))

Figure 7. Operational semantics for communication-checked multithreaded programs.

to maintain a shadow stack S for each thread and a global
map φ recording the last writer of every variable (and the last
releaser of every lock). A specification Γ is a set of modules
M = (µ, γC , γI), where µ is the set of methods that belong
to the module. Specifications and modules are discussed in
more detail in Section 4.3. For now it suffices to understand
that inlined methods do not belong to any module.

The judgment Γ ` φ; t;S; a ⇒ φ′;S′, in Figure 7,
describes the effects of operations on shadow stacks and the
last-writers map. A program can take a step according to this
judgment if the step will not violate the specification.

A shadow stack S represents a thread’s call stack, with
inlined methods elided. When thread t enters the non-inlined
method m, it pushes m onto its shadow stack, popping it

off when it exits the method. Inlined methods are ignored.
(See rules INS ENTER, INS EXIT, INS INLINED ENTER, and
INS INLINED EXIT.) When a thread’s current shadow stack
is ·,m1,m2, its program counter is in m2 (or an inlined
transitive callee of m2), where m2 was called by m1 (or
an inlined transitive callee of m1), and m1 was the thread’s
entry point, or a transitive callee of an inlined entry point.

The last-writers map φ stores for each variable and lock
the last thread to write or release it and that thread’s shadow
stack at the time of the operation. The entry in the last-
writers map for a variable x or lock l is updated with the
executing thread and its current stack on every write to x or
release of l, as shown in rules INS WRITE and INS RELEASE.

µ;m ` S = S′; Ŝ

COLLECT

m ∈ µ µ;m′ ` S = S′; Ŝ

µ;m′ ` S,m = S′; Ŝ ∪ {m}

BORDER
m ∈ µ S = S′,m′ m′ /∈ µ

µ;m ` S,m = S; {m}

END
m ∈ µ

µ;m ` ·,m = ·; {m}

γ ` mw ; mr

CHECK METHODS
(W,R) ∈ γ mw ∈W mr ∈ R

γ ` mw ; mr

γC ` Ŝw ; Ŝr

CHECK SEGMENTS

∀mw ∈ Ŝw . ∀mr ∈ Ŝr . γC ` mw ; mr

γC ` Ŝw ; Ŝr

Γ ` Sw ; Sr

EXPOSED LAYER

(µ, γC , γI) ∈ Γ µ;mw ` Sw = S′w; Ŝw µ;mr ` Sr = S′r; Ŝr γC ` Ŝw ; Ŝr γI ` mw ; mr Γ ` S′w ; S′r
Γ ` Sw ; Sr

ENCAPSULATED LAYER

(µ, γC , γI) ∈ Γ µ;mw ` Sw = S′w; Ŝw µ;mr ` Sr = S′r; Ŝr γC ` Ŝw ; Ŝr γI 0 mw ; mr

Γ ` Sw ; Sr

EMPTY

Γ ` ·; ·

Figure 8. Stack checking semantics.

Read and acquire operations are instrumented to check
that any communication they complete is allowed by the
specification Γ. Thread-local reads and acquires are always
allowed. When tr reads from variable x, if the last thread
to write to x was tr, then the read is allowed to proceed, as
shown in rule INS THREAD-LOCAL READ. If the last thread
tw to write to x was not the same as the thread tr executing
the read operation, then the read is only allowed to proceed
if the specification Γ allows communication from the stack
Sw of tw at the time it wrote to x to tr’s current stack, Sr,
according to the judgment Γ ` Sw ; Sr, in Figure 8.
(Specifications and stack checking are described in detail in
Section 4.3.) The same logic applies to lock acquires, with
respect to the last release of the same lock.

An instrumented program state Σ consists of a heap H , a
last-writers map φ, and an instrumented thread state store Θ,
which maps each thread identifier to the associated thread
state, instrumented with a shadow stack. An instrumented
program is allowed to step from one instrumented state to
another under the communication-checked semantics, as
shown in the judgment Program; Γ ` Σ ⇒ Σ′, in Figure 7,
if it can step under the simple semantics and the operation
is allowed under the instrumented semantics by satisfying
the judgment Γ ` φ; t;S; a ⇒ φ′;S′. Specifically, the rule
CHECKED STEP ensures that read and acquire operations
are only possible when the communication they complete is
thread-local or allowed by the specification.

4.3 Specification Semantics
A communication specification Γ is a set of modules. Each
module M = (µ, γC , γI) consists of a set of methods µ that
does not overlap with that of any other module in the spec-

ification, a set of communication groups γC that describes
what communication is allowed among methods in µ, and a
communication interface γI that describes what communi-
cation among methods in µ is visible to callers outside the
module. A communication group G is a pair (W,R) of sets
of methods, denoting communication from every method in
the writer set W to every method in the reader set R.

A stack segment Ŝ is the set of methods appearing in a
maximal contiguous subsequence of a stack such that all of
the methods in the subsequence belong to the same mod-
ule. A stack segment represents a conceptual layer of com-
munication abstraction in a communicating stack. The judg-
ment µ;m ` S = S′; Ŝ, in Figure 8, states that a stack S
is prefixed by a maximal non-empty sequence of methods
comprising the segment Ŝ, where Ŝ ⊆ µ, m is the method
in Ŝ that is deepest in the stack prefix, and S′ is the suf-
fix of S starting with the shallowest method m′ on S such
that m′ /∈ µ. If all methods on S are in µ, then S′ is the
empty stack. Though the rules implementing this judgment
are somewhat subtle, with a recursive case (COLLECT), and
two base cases (BORDER and END) for collecting stack seg-
ments, they work together to select one segment of contigu-
ous methods belonging to one module from the callee end of
the stack. Applied recursively, this judgment just segments a
stack as described in Section 3.4.

Communication from writer stack Sw to reader stack Sr

is checked recursively by the judgment Γ ` Sw ; Sr in
Figure 8 by peeling stack segments Ŝw and Ŝr from the
tips of Sw and Sr, respectively, where mw and mr are the
deepest methods in the two segments, and S′w and S′r are the
suffixes of the two stacks, respectively.

We check that Ŝw and Ŝr belong to the same module
M = (µ, γC , γI) and that for all methods m′w ∈ Ŝw and
all methods m′r ∈ Ŝr, there exists some group in γC in
which m′w is a writer and m′r is a reader. (Recall that stacks
contain no inlined methods.) These checks are described by
the judgments γC ` Ŝw ; Ŝr and γ ` m′w ; m′r. If
this segment matching fails, then communication from Sw

to Sr is prohibited by the specification. Otherwise, if mw

and mr, the segment boundary methods, are not writer and
reader respectively in any group in the module’s communi-
cation interface γI , then communication is hidden from S′w
and S′r by this pair of segments, so no more checking is nec-
essary; communication from Sw to Sr is allowed. Otherwise,
if some group in the module’s communication interface does
describe the writer-reader pair (mw,mr), then communica-
tion is exposed by these segments and we must recursively
check that the two stack suffixes S′w and S′r are allowed to
communicate.

4.4 Properties of Communication-Checked Programs
Although the main purpose of our formalization is to define
precisely when a dynamic memory operation satisfies or
violates a communication specification, an ancillary ben-
efit is that we can reason about important properties of
communication-checked program executions. In this sec-
tion, we sketch, but for brevity do not prove, meta-theorems
on the equivalence of communication-checked and uninstru-
mented program executions (with a special equivalence case
for empty specifications) and the soundness and precision of
communication checking.

When describing program executions, we use →∗ and
⇒∗ to denote the reflexive and transitive closure of → and
⇒, respectively. To compare uninstrumented and communi-
cation-checked executions, we must first define the equiva-
lence of uninstrumented and instrumented program states.
If ∀t . ∃S . Θ(t) = (θ(t), S), then (H, θ) is equiva-
lent to (H,φ,Θ) and we write (H, θ) ≡ (H,φ,Θ) or
(H,φ,Θ) ≡ (H, θ). The initial program state σ0 and the
initial instrumented program state Σ0 are equivalent. Both
hold the empty heap and the same initial thread states. Σ0

also holds the empty last-writers map, and stores the empty
stack for each thread.

Equivalence of Semantics. All executions admitted by a
communication-checked program are also admitted by the
uninstrumented program; given a specification, all execu-
tions admitted by the uninstrumented program are either ad-
mitted by the communication-checked program too or con-
tain communication that is invalid under the specification:

1. If Program; Γ ` Σ0 ⇒∗ Σ then ∃σ ≡ Σ such that
Program ` σ0 →∗ σ.

2. Given Γ, if Program ` σ0 →∗ σ then either:

(a) ∃Σ ≡ σ such that Program; Γ ` Σ0 ⇒∗ Σ and
all communication in Program ` σ0 →∗ σ is valid
under Γ, or

(b) @Σ ≡ σ such that Program; Γ ` Σ0 ⇒∗ Σ and
Program ` σ0 →∗ σ contains communication that
is invalid under Γ.

Equivalence of Semantics Under the Empty Specification.
A special case is that, given a specification where all meth-
ods are inlined, a communication-checked program admits
all the executions admitted by the uninstrumented program:

If Program ` σ0 →∗ σ, then ∃Σ ≡ σ such that
Program; ∅ ` Σ0 ⇒∗ Σ.

Soundness. If an uninstrumented program execution per-
forms communication that is invalid under a given specifica-
tion, then the communication-checked version does not ad-
mit that execution, given the specification:

Given Γ, if Program ` σ0 →∗ σ and the uninstrumented
program execution performs communication that is invalid
under Γ then @Σ ≡ σ such that Program; Γ ` Σ0 ⇒∗ Σ.

Precision. A communication-checked program admits all
executions admitted by the uninstrumented version that do
not perform invalid communication under its specification:

Given Γ, if Program ` σ0 →∗ σ and @Σ ≡ σ such
that Program; Γ ` Σ0 ⇒∗ Σ, then Program ` σ0 →∗ σ
contains communication that is invalid under Γ.

5. Implementation
In this section we describe OSHAJAVA,1 our prototype
implementation of communication specifications for Java.
OSHAJAVA specifications are expressed by Java annotations.
At class load time, we use bytecode instrumentation to in-
strument each write operation with a communication state
update and each read operation with a check to see if the
method communication it causes obeys the specification.
The instrumentation causes the program to throw a commu-
nication exception if its next step would violate its specifica-
tion. Though deeper compiler or virtual machine integration
might afford more optimization opportunities, our imple-
mentation offers the following useful properties:

• Portability: OSHAJAVA programs compile and run with
any Java 1.6-compatible compiler and virtual machine.
• Interoperability: Every valid Java program is also a

valid OSHAJAVA program (and vice versa) at both the
source and bytecode levels. Every Java program can run
unmodified and without recompilation under OSHAJAVA
(modulo performance overhead) and every OSHAJAVA
program can run unmodified and without recompilation
under Java (without runtime specification checking).
• Flexibility: Programmers can annotate programs incre-

mentally and mix unannotated and OSHAJAVA-annotated

1 “OSHA” stands for Organized Sharing, the project’s original working title.

components indiscriminately in programs running under
OSHAJAVA or the standard unchecked Java runtime.

The remainder of this section describes the annotation sys-
tem and the runtime system in more detail.

5.1 Specification Annotation System
By default, each Java package is a communication module.
In practice, we observe that most modules align with pack-
ages or classes. However, programmers may define their own
modules comprised of arbitrary sets of methods. In the pres-
ence of method overloading, group identifiers are simpler to
express than method identifiers. The annotation processor,
run as a plugin to the Java compiler, compiles the specifica-
tion for each module to an efficient form for runtime use. The
task of instrumenting the program with specification checks
is deferred to runtime to avoid compiling both instrumented
and uninstrumented versions of programs.

Subtyping and Dynamic Dispatch. Our specification lan-
guage and dynamic checker work on methods that are actu-
ally called at run-time, so we do not need any special sup-
port for method overriding. As a program design matter, one
could argue that an overriding method should perform no
more communication external to callers than is specified by
the overridden method—this is just an instance of behavioral
subtyping [25]—but we do not require the specifications for
the methods to obey this relation. As a practical matter, a
@Super annotation to indicate, “the same specification as the
method being overridden” would work fine, but we have not
suffered from its absence in our experience.

5.2 Runtime System
At runtime, OSHAJAVA instruments each class as it is loaded
by the JVM. Each field f of each object o is tracked by a
communication state field, inserted by the instrumentor, that
stores the last thread to write a value o.f and the call stack
under which the write was performed. When a thread reads
o.f , the runtime first checks the communication state for o.f
to see if the last write was performed by the same thread or if
communication is allowed from the last-writer call stack to
the current call stack. Checking the latter property uses the
natural algorithmic version of stack checking as described
in Definition 3 and Section 4.3, incrementally checking that
the two stacks have equivalent segmentations and that all
communication in each corresponding segment is allowed
by some group in the specification. Performing the full stack
check on every read is prohibitively expensive; fortunately,
most memory reads can be checked by simpler means.

Checking Optimizations. To avoid the high cost of a full
stack walk for every communicating read, we employ the
following series of progressively more expensive checks.
Each stack has an integer ID and a bit set of the IDs of other
stacks that are allowed to communicate to this stack. This
set is populated lazily as the program runs. In addition to

the specification, the runtime maintains a global hash table-
based memo table of pairs of stacks that have previously
been checked. The checks proceed as follows:

1. If the last write was done by the same thread, the read
does not communicate, and is trivially valid.

2. If the writer stack’s ID is a member of the reader stack’s
bit set of valid writers, then the communication is valid.

3. If the pair of writer and reader stacks is in the global
memo table of valid communicating stacks, then the com-
munication is valid. If the number of checks of this pair of
stacks that have been satisfied by the global memo table
reaches a certain threshold (currently, 8), then the writer
stack is given the next available non-zero ID, and this
ID is added to the reader stack’s bit set of valid writers.
ID and bit set updates are synchronized with respect to
each other on a given stack, but not with respect to bit
set membership tests. At worst a membership test that
should succeed races with an update and fails, reverting
to a more expensive check.

4. If the writer stack has never communicated to the reader
stack before, a full stack walk is performed. If this check
fails, a communication exception is thrown, otherwise the
pair is added to the global memo table.

Section 6.2 discusses the frequency with which each of these
stages is used in practice. In summary, nearly all read oper-
ations are thread-local or validated by the bit sets. In typical
programs, pairs of call stacks communicate repeatedly, so
memoization quickly pays off. Allocating IDs lazily keeps
the bit sets small. In practice, at most 41 inlined call stacks
received IDs in any single execution. Our implementation
uses bit sets that can grow to arbitrary size, but for all of the
executions we have observed, a single 64-bit long would
suffice. The thread-local check and bit set test are inlined
into the body of the method performing the checked read.

Other Optimizations. A program may generate very large
numbers of call stacks, visit the same call stack repeatedly,
and visit many call stacks with differing tips but identical
tails. Omitting inlined methods from shadow stacks reduces
the size and number of shadow stacks we need to store and
a hash-consing representation limits their duplication.

Each field and array element is tracked by a communica-
tion state storing the last writer to that field or to any element
in that array. A runtime option enables array-level tracking
for array accesses, with one communication state per array,
trading precision for memory overhead. Object-level com-
munication tracking is not yet implemented, mainly because
the memory overheads we have observed with field-level
tracking are reasonable. Tracking at the object and array
granularities is sound and precise if, when thread tr reads
an element, all elements in the array are guaranteed to have
been written last by the same thread tw. This property is

neither uncommon nor pervasive; where it holds, array-level
tracking can save memory.

Atomicity of Checks and Accesses. Our tool relaxes the
soundness requirement that the checks it inserts be atomic
with the memory accesses they check. As a result, it is
only fully sound and precise on race-free programs. How-
ever, the possibility for unsound communication checking
behavior (based on out-of-date communication state) is lim-
ited to those data that were targets of races. Our experiences
with various dynamic race detectors suggest that, in practice,
forgoing strictly atomic check-access sequences yields sub-
stantial performance benefits, while unsound behavior oc-
curs rarely if at all, an acceptable trade-off for a debugging
tool. Ideally, synchronization is an orthogonal and separately
checked concern.

6. Evaluation
The goals of our evaluation are to characterize our anno-
tation language, understand the performance and memory
overheads of the OSHAJAVA checking tool, and discuss case
studies. We used the multithreaded benchmarks from the
Java Grande suite [37] and selected programs from version
9.12 of the DaCapo benchmark suite [5].

Table 2 shows the applications we annotated for our eval-
uation. The Java Grande benchmarks are relatively small (at
most 1.2K lines of code), but exercise a variety of communi-
cation structures. From the DaCapo benchmark suite, which
contains larger-scale parallel and concurrent programs, we
examine a subset of the applications that exhibit signifi-
cant communication in contrasting patterns. These applica-
tions were selected because they are representative of differ-
ent patterns of communication. Avrora exhibits frequent and
complex communication that often crosses module bound-
aries due to callback patterns. Batik is embarrassingly par-
allel; the only communication occurs at the top level in the
test harness. Xalan communicates frequently but in a more
modular way than Avrora.

While there are many possible valid specifications for
a given program (even the empty specification—all meth-
ods inlined—suffices), we have attempted to annotate as
thoroughly as possible. In particular, we have never inlined
methods where meaningful communication seems to occur.
However, programmers more familiar with the applications
may construct specifications differently. For the small Java
Grande benchmarks as well as Batik, we are very confi-
dent that we have annotated all meaningful communication;
for the more complex Avrora and Xalan benchmarks, while
there is greater chance that we have missed some meaning-
ful communication, we believe we have covered the entire
program, especially since unspecified communication would
lead to exceptions.

We now present evaluations of: (1) specification size, or
how many annotations were inserted; (2) specification preci-
sion, measuring how much of the specified communication

was actually exercised; (3) runtime overheads of the check-
ing tool in both time and space; and (4) a case study of Xalan
and Avrora, the most complex applications we annotated.

6.1 Specification Size and Precision
Size of Annotations. Table 2 lists the number of anno-
tations used in our communication specifications for each
benchmark. The annotation count includes all of the anno-
tations described in Section 3: group declarations, group
memberships (multiple-group @Reader and @Writer dec-
larations are considered multiple annotations), and explicit
module memberships. The Java Grande benchmarks require
between 0.5 and 1.5 annotations per method. These applica-
tions are very small and therefore an artificially large portion
of their methods are involved in communication. In contrast,
the DaCapo applications have a much lower frequency of
annotations: one for every 50 to 100 methods.

Due to their size, our annotations of the Java Grande
benchmarks consist of just one to three communication mod-
ules. In the DaCapo suite, Avrora has 7 non-empty modules
(those with at least one non-inlined method) with an average
of 12 non-inlined methods per module. Xalan has 6 modules
with 7 non-inlined methods per module.

As expected, the majority of the methods in the bench-
marks we examined could be inlined (and thus unannotated).
In the Java Grande benchmarks, about 85% of the meth-
ods are inlined. Both Avrora and Xalan from DaCapo have
greater than 99% of their methods inlined. Because our an-
notation system inlines methods by default, specifications
can be created by identifying the small set of methods that
must be annotated.

Dynamic Communication Characteristics. Our measure
of specification precision is the proportion of the static spec-
ification dynamically exercised during a given execution of
the program. Our annotation system allows a trade-off be-
tween conciseness and precision—by adding more annota-
tions, the programmer can more tightly constrain the com-
munication behavior of the program.

A good annotation system would provide high precision
using a small number of annotations. However, complete
precision may not be attainable or even desirable for all ap-
plications. Some looseness in specifications allows for vari-
ation in communication patterns across inputs. Loose spec-
ifications may also allow valid communication that does
not currently occur but may start to occur as the program
changes. Specifically, it may be helpful to allow communi-
cation between methods that share data and could, but never
do, run on different threads. Such a specification corresponds
well with intuition regarding the program’s behavior and
makes the specification robust to future changes in the pro-
gram that run the methods on separate threads.

Figure 9 shows the proportion of methods and commu-
nicating method pairs declared in the specification that ac-
tually communicated at runtime. This is a direct measure

Lines of Annotated Non-Empty Total
Name Description Code Methods Methods Groups Modules Annotations
Crypt IDEA encryption 300 17 5 4 1 16

LUFact LU factorization 500 29 6 4 2 15
MolDyn N-body simulation 500 27 16 6 2 39

MonteCarlo Financial simulation 1200 172 11 3 1 19
RayTracer 3D ray-tracing 700 77 15 6 3 37

SOR Linear system solver 200 13 5 3 1 14
Series Fourier transform 200 15 6 2 1 10

SparseMatmult Matrix multiplication 200 12 4 2 1 9
Avrora Sensor network micro-

controller simulator
70,000 9775 85 17 7 175

Batik SVG image renderer 190,000 15547 8 2 2 16
Xalan XSLT/XPath interpreter 180,000 7854 42 7 6 90

Table 2. Summary of benchmarks and their annotations. “Total Annotations” counts all the annotations described in Section 3.
Non-empty modules have at least one non-inlined method. Lines of code were counted by David A. Wheeler’s SLOCCount.

C
ry

pt

LU
F

ac
t

M
ol

D
yn

M
on

te
C

ar
lo

R
ay

T
ra

ce
r

S
O

R

S
er

ie
s

S
pa

rs
eM

at
m

ul
t

Java Grande

0%

20%

40%

60%

80%

100%

C
ov

er
ag

e

A
vr

or
a

B
at

ik

X
al

an

DaCapo

Methods
Method pairs

Figure 9. Proportion of the specification exercised during
a single run of each benchmark on 8 threads. The first bar
indicates the percentage of non-inlined methods that actu-
ally communicated with at least one other method. The sec-
ond indicates the percentage of pairs of methods allowed to
communicate that actually communicated.

of precision. As expected, the simpler applications (Java
Grande) had a much higher proportion (≈80% vs. ≈30% on
average) of communicating methods than the larger applica-
tions (DaCapo). The same applies to communicating pairs of
methods (≈60% vs. ≈10% on average). This is largely due
to the effect described earlier: the specifications conserva-
tively allow communication between pairs of methods that
would communicate if they ever ran on different threads. In
Batik, only 1 method pair communicates out of 19 pairs al-
lowed to communicate; all of the unexercised method pairs
fall into the above category of methods that would communi-
cate if they did not always run on the same thread. Recall that
the annotations measured are first impressions by program-
mers unfamiliar with the applications details: further study
could likely improve precision.

In order to make specification feasible, the number of
methods in each stack segment (see Section 3.4) should be
small: the programmer must allow every pair of reader and
writer methods in a pair of stack segments to communi-
cate, and the number of method pairs grows quickly with the
size of module segments. A programmer using OSHAJAVA
can keep these all-to-all checks small by dividing unrelated
groups of methods into communication modules and by in-
lining most methods. For the Java Grande benchmarks, the
average number of methods per stack segment is between 1
and 1.5. For two of the benchmarks (Crypt and LUFact), ev-
ery segment had exactly 1 method. In DaCapo, Avrora has
1.8 methods per stack segment; Xalan’s average is close to 1
while Batik’s is exactly 1. Communication modules and in-
lining effectively keep OSHAJAVA’s all-to-all checks small.

6.2 Performance
We ran performance and profiling experiments for the
OSHAJAVA runtime on an 8-core 2.8GHz Intel Xeon E5462
machine with 10GB of memory, running Ubuntu GNU/Linux
8.10 and the HotSpot 64-bit client VM 1.6.0 with maximum
heap size set to 8GB. We ran each benchmark 10 times in
each configuration, measuring execution time and memory
usage and preceding each set of 10 by a warmup run. For
the Java Grande benchmarks, we used the largest available
inputs; for DaCapo we used the default inputs.

Execution Time. Figure 10 shows the average execution
time of benchmarks run on OSHAJAVA, configured to use 1,
2, 4, or 8 threads with element- and array-level communica-
tion tracking, normalized to the average execution time on
Java with the same number of threads. The DaCapo bench-
marks were run with default options (yielding 7 threads for
Avrora, 8 for Batik, and 9 for Xalan). Single-threaded exe-
cutions are included to demonstrate the baseline overheads
introduced by OSHAJAVA. Overall, the performance is quite
reasonable for a debugging tool. Most benchmarks experi-

Crypt LUFact MolDyn MonteCarlo RayTracer SOR Series Sparse
Matmult

Java Grande

0

5

10

15

20

25

30

S
lo

w
do

w
n

(x
)

1 Array
2 Array
4 Array
8 Array
1 Element
2 Element
4 Element
8 Element

Avrora Batik Xalan

DaCapo

Figure 10. Average instrumented execution time of benchmarks with element- and array-level communication tracking for 1,
2, 4, and 8 threads, normalized to average uninstrumented execution time with the same number of threads.

ence 5-15x slowdown, trending towards the lower half of this
interval. In general, performance with element-level tracking
is on par with array-level tracking.

There are four major exceptions to these trends: Series,
which has overheads between 0.1% and 2%, spends nearly
all of its time inside a tight loop performing floating point
operations on local variables, so slow field or array accesses
are a non-issue. SparseMatmult scales very poorly with
array-level communication tracking, running 24.1 times as
long as under Java with 8 threads. However, it scales nicely
with element-level tracking, suggesting that contention on
shared array states is a bottleneck. Indeed, sparse matrix
multiplication is known to be highly cache-sensitive. When
many threads concurrently access different elements of an
array under array-level tracking, caches contend heavily on
the array’s state, causing increased cache-coherence traffic,
and likely affecting the scaling properties of SparseMat-
mult. MonteCarlo and Xalan run 1.5 to 2 times as slow
with element-level tracking as with array-level tracking.
This slowdown is due in part to garbage collection burden:
MonteCarlo spends almost 4—and Xalan roughly 7–times
longer garbage collecting with element-level tracking than
with array-level tracking.

Memory Overhead. Figure 11 shows the average peak
memory usage of benchmarks run on OSHAJAVA with
array-level and array element-level communication track-
ing, normalized to the average peak memory usage on Java.2

Memory overhead is fairly consistent across all numbers
of threads; these data represent averages over runs with 8
threads. Array-level tracking overheads are quite low for all
of the Java Grande benchmarks except MolDyn and Monte-
Carlo. Since many of these programs use arrays heavily,
the overhead of element-level tracking is larger. Crypt’s
high memory overhead of 34.3x (roughly 5.4GB total) with
element-level tracking results from its allocation of three
50,000,000-element byte arrays for the large input we tested.

2 We believe RayTracer has a lower memory footprint running under
OSHAJAVA because garbage collection is triggered more frequently.

(34.3)

C
ry

pt

LU
F

ac
t

M
ol

D
yn

M
on

te
C

ar
lo

R
ay

T
ra

ce
r

S
O

R

S
er

ie
s

S
pa

rs
eM

at
m

ul
t

Java Grande

0

2

4

6

8

10

M
em

or
y

O
ve

rh
ea

d
(x

)

Array
Element

A
vr

or
a

B
at

ik

X
al

an

DaCapo

Figure 11. Average peak memory usage of instrumented
executions with array- and element-level communication
tracking, normalized to average peak memory usage of unin-
strumented executions.

Effectiveness of Optimizations. We also profiled commu-
nication and checking in each of the benchmarks. For sim-
plicity, we present this data aggregated across all thread con-
figurations for each benchmark. Figure 12 shows the distri-
bution of successful communication checks over the stage in
the checking algorithm at which they succeeded. Communi-
cation checking slow paths are elided from this plot because
they are not even visible when included. In fact, fewer than
1 in 10,000,000 reads were not thread-local or validated by
the bit set memo table; less than two-thirds of these required
stack walks. Across all benchmarks, the largest number of
stack walks in a single execution was 697, while the number
of communications ranged from a few thousand to 6 billion,
with most executions performing tens of millions to hun-
dreds of millions of communications. It is clear that aggres-
sive memoization of valid pairs of communicating stacks
makes dynamic communication checking tractable. Indeed,
checking communication between deep stacks is no more
costly than checking communication between empty stacks

C
ry

pt

LU
F

ac
t

M
ol

D
yn

M
on

te
C

ar
lo

R
ay

T
ra

ce
r

S
O

R

S
er

ie
s

S
pa

rs
eM

at
m

ul
t

Java Grande

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 R
ea

ds

Array: Thread-local
Array: Fast memo
Element: Thread-local
Element: Fast memo

A
vr

or
a

B
at

ik

X
al

an

DaCapo

Figure 12. Fraction of all reads validated at each checking
stage, for 8 threads with array- and element-level tracking.

since stack walks are performed exceedingly rarely. In the
programs we have considered, performance is not affected
by the depth or precision of a specification.

Figure 12 also illustrates soundness and precision is-
sues with array-level communication tracking (as discussed
in Section 5.2). In most of the Java Grande multithreaded
benchmarks, array-level is imprecise. Communication struc-
ture in these programs is quite stable, so a difference in the
rate of apparent communication under array- vs. element-
level is a rough indicator of how much false communication
or false non-communication occurs with array-level track-
ing. SOR observes more communications with array-level
tracking, suggesting false communication. RayTracer falls
at the opposite extreme: in reality, 97% of its reads commu-
nicate, but only 1% appear to communicate with array-level
tracking. The explanation is simple: Under array-level track-
ing, when a thread t writes an element, it updates the array’s
last writer to t. If no other threads write elements of the array
before t’s next element read, it appears thread-local, regard-
less of which thread last wrote that particular element. This
pattern is common in RayTracer.

Thus if memory is not a concern, there is no reason to
sacrifice soundness and precision for array-level tracking.
As observed previously, element-level tracking has insignif-
icant performance impact in most of our benchmarks. The
two exceptions to this trend, MonteCarlo and Xalan, exhibit
little or no false communication or non-communication with
array-level tracking.

6.3 Case Studies
We now discuss some of our experience annotating Xalan
and Avrora, the two most complex applications we consid-
ered. We discovered communication properties by introduc-
ing restrictive specifications and successively relaxing them
based on observed violations. We also used a simple tool that
enumerates pairs of communicating methods. While pro-
grammers may approach the process differently when an-
notating programs incrementally as they are constructed, we
believe our experience is representative of the process of an-
notating existing programs.

@Group("ListLinks")

class TransactionalList {

Link head;

Link tail;

@Reader({"ListLinks"})

@Writer({"ListLinks"})

void add(Object value) {

...

tail.next = new Link(value);

tail = tail.next;

}

}

class EventList extends TransactionalList {

@Reader({"ListLinks"})

void fireAll() {

for (Link pos = head; pos != null;

pos = pos.next)

((Event)pos.object).fire();

}

}

Figure 13. A class in the Avrora benchmark from DaCapo
that causes communication across callbacks. The desired
annotations shown would prohibit this communication.

Simple Specifications. One advantage of our communi-
cation-centric approach to specification is its ability to dis-
tinguish which methods can write shared data. In data-
centric systems such as SharC [3], shared data can be de-
clared read-only to prevent modification after initialization,
but the programmer cannot selectively allow read–write
access to certain methods. The benchmarks we examined
contained several methods that needed @Reader but not
@Writer annotations, suggesting that this distinction is use-
ful in specifying real communication patterns.

The large Java programs we examined often exhibited
communication of object references that does not intuitively
correspond to communication of data. For instance, many
threads in Avrora use a global screen writer object. With
strictly communication-centric annotations, every method
that uses the screen writer must be allowed to read from the
method that creates it. While this annotation strategy pre-
cisely describes the communication pattern, a system com-
bining communication- and data-centric specification styles
might allow the annotation to be more succinct by simply
declaring the screen writer object read-only.

Modules and Abstraction. We found that, in the common
case, communicating pairs of stacks have equivalent seg-
mentations, as described in Section 3.4. Mismatched mod-
ule sequences are in our experience confined to callback sit-
uations, in which a module appears once on one stack but
twice on the other (i.e., two methods from one module are
separated by at least one method from a different module).
Avrora serves as a case study for this communication pattern.

In Figure 13, an EventList class extends a linked list
class to invoke methods on simulation event objects at a later
time. It would be desirable to place the list class in a separate
module to avoid exposing incidental communication through
its private fields. However, using this strategy, because the
events fired by the EventList read data written outside of
events, communication occurs from a stack without methods
from the list module to one with such methods. This situation
violates the assumption in Section 3.4 that communicating
stack pairs have equivalent segmentations. This assumption
prevents us from isolating EventList in a communication
module, but we can still create a correct specification by
inlining the list methods. This strategy yields a less precise
specification but permits communication across callbacks.

In contrast to Avrora, Xalan exhibits modular, isolated
communication that rarely crosses module boundaries. For
example, Xalan includes a class called FastStringBuffer

that matches well with OSHAJAVA’s distinction between
communication and interface groups. The buffer’s append

method must be allowed to communicate with itself because
it both reads and writes private bookkeeping data. However,
semantic communication occurs only from append to out-
put methods like toString; clients of the class that only
append to the buffer should not also be allowed to read it.
We were able to succinctly specify this constraint by using
distinct communication and interface specifications for the
buffer module. Because of the modular nature of commu-
nication in Xalan, our specification for the benchmark does
not need the inlining strategy described above for Avrora.

7. Future Work
While our approach to communication checking is entirely
dynamic, an obvious area for future work is developing a
sound, conservative static analysis for checking specifica-
tions. Our primary goal has been to develop a checkable and
useful specification language that captures important safety
properties of shared-memory programs in ways that match
the program structure. We did not allow checking technology
to unduly affect (e.g., reduce the expressiveness of) the spec-
ifications. Indeed, the need to check entire call stacks was
a challenge our dynamic analysis had to overcome. Static
analysis with reasonable precision will also face significant
challenges, notably alias analysis for thread-shared data. We
believe our program annotations and checking tool are valu-
able even without a static-analysis counterpart.

Currently, use of callbacks presents an inconvenience for
our annotation system, requiring that methods be inlined
when they should intuitively be encapsulated in a commu-
nication module. Extensions to our specification language
may allow more precise specification in the case of call-
backs and other situations when communicating stacks do
not have equivalent segmentations. In addition, our language
currently has no notion of logical threads—code units that
should be considered “communicating” even when run in

the same Java thread. As a result, our system does not check
communication between distinct tasks that are multiplexed
onto the same Java thread (e.g., in a worker thread pool). An
additional language construct could address this issue.

Our specifications express properties distinct from those
addressed by other approaches such as data-centric sharing
specifications. Combining these approaches may offer op-
portunities for more precise specifications, including con-
straints that a given pair of methods may only communicate
through a given shared field.

Communication specifications could be used for opti-
mization of shared-memory programs. An operating system
could use communication specifications to schedule com-
municating pieces of code to nearby processing units. Or,
a compiler could better decide what optimizations to apply
in threaded code if it knew the communication pattern.

Significant avenues exist for optimizing our runtime
checker. Static escape analysis and other data flow analyses
could likely identify several opportunities for sound instru-
mentation elision, improving performance significantly. A
JIT compiler that performs thread-escape analysis will pro-
vide some of these benefits, but more static analysis could
further reduce the overhead of instrumentation.

8. Related Work
Much of the work on checking properties of multithreaded
software has focused on race detection and atomicity check-
ing. Detecting data races is not a program-specific issue,
so general tools requiring no annotations are successful,
using either static [8, 12, 24, 29, 30, 33, 42, 43] or dy-
namic [9, 17, 36, 38, 41, 48, 49] analysis. That said, type sys-
tems and related annotation systems can make checking sim-
pler and more modular [1, 6, 7, 13–15, 23]. Similarly, atom-
icity is a general property amenable to static [2, 18, 19, 44]
and dynamic [16, 21, 32] approaches.

Our communication-centric approach complements this
work in two ways: (1) it specifies how shared-memory com-
munication occurs rather than data or isolation properties
and (2) it focuses on program-specific properties with mul-
tiple levels of abstraction rather than generic properties.
A generic property like “data-race free” or “atomic” in
our communication-centric view would be “does no inter-
thread communication,” which we can easily specify. Such a
specification—and finding violations of it—could well prove
useful, but we have focused instead on specifications for
methods that do communicate and checking that the speci-
fied communication encompasses all actual communication.
Also note that “does no communication” is incomparable
to both “data-race free” (write/write races do not communi-
cate and communicating methods may or may not be racy)
and atomic (an atomic method may not communicate and a
communicating method may not be atomic).

In the sense of capturing simple program-specific multi-
threading properties, some recent work shares many of our

goals despite being data-centric. For example, SharC [3] lets
programmers specify data-sharing rules at an object gran-
ularity: for example, read-only and read-write. Shoal [4]
builds on SharC and lets programmers assign rules to en-
tire data-structures, as opposed to individual objects. More
recently, Martin et al. [27] present an annotation technique
for C/C++ programs that lets programmers declare data-
ownership properties (which threads own which data). As
in our work, they use a dynamic tool to check specifications.

Approaches to verifying more sophisticated properties
of multithreaded programs include abstraction and model-
checking (e.g., [10, 46]) and modular theorem-prover tech-
niques using assume-guarantee reasoning (e.g., [11, 20]).
Richer notions of program verification naturally require
more sophisticated annotations than our specifications; our
goal is to focus on properties, namely communication,
unique to multithreading, rather than more general program
verification. Our work is complementary to model-checking
techniques based on exhaustive concurrent program test-
ing [22, 28, 40]: one could use exhaustive testing to deter-
mine (non)conformance to our specifications. Thread col-
oring [39] uses statically checked annotations to specify
which threads are allowed to execute what code based on
the roles they fulfill. The code communication properties
that are specified and checked in our system are comple-
mentary to those verified by this approach.

In a rough sense, static pointer analysis for multithreaded
programs [31, 34, 35] is related: If no memory accesses in
methods m1 and m2 or any methods they call have over-
lapping points-to sets, then m1 and m2 definitely do not
communicate via shared memory. However, points-to sets
do not distinguish intra-thread and inter-thread communica-
tion, which is central to our work. Pointer analysis is also not
naturally suited to working for multiple levels of abstraction
and encapsulating communication within modules.

Recent work on code-based inter-thread communica-
tion invariants has employed hardware to record and ana-
lyze instruction-level inter-thread communication patterns
in program executions for debugging [26] or inference of
likely intended communication invariants to enforce in sub-
sequent program executions [47]. Another approach records
function-level communication for program understanding
and characterization [45]. Our system is pure software and
employs explicit specifications to define precisely what com-
munication is allowed at the method level.

9. Conclusions
We have developed new communication-centric, simple,
partial specifications for shared-memory multithreaded pro-
grams. The key idea is to specify which methods commu-
nicate with each other across threads. Essential to our tech-
nique is a treatment of (transitive) callees that is modular
and allows specifications at multiple levels of abstraction.
We have implemented a dynamic-analysis tool to check our

specifications and shown that it is effective at checking non-
trivial specifications for executions of benchmark programs.

Acknowledgments
This work was supported in part by an Anne Dinning -
Michael Wolf Endowed Regental Fellowship, an ARCS
Foundation Fellowship, a Hacherl Endowed Graduate Fel-
lowship, and a Microsoft Faculty Fellowship. We thank Tom
Bergan and Marius Nita for thoughts on modularity, and
the SAMPA and WASP groups at the University of Wash-
ington for useful discussions. We also thank Steve Freund
for helpful discussions on dynamic analysis techniques for
concurrent programs.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe

Locking: Static Race Detection for Java. ACM Transactions
on Programming Languages and Systems, 28(2), 2006.

[2] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Op-
timized Run-time Race Detection and Atomicity Checking
Using Partial Discovered Types. In IEEE/ACM International
Conference on Automated Software Engineering, 2005.

[3] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC:
Checking Data Sharing Strategies for Multithreaded C. In
ACM Conference on Programming Language Design and Im-
plementation, 2008.

[4] Z. Anderson, D. Gay, and M. Naik. Lightweight Annota-
tions for Controlling Sharing in Concurrent Data Structures.
In ACM Conference on Programming Language Design and
Implementation, 2009.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2006.

[6] C. Boyapati and M. Rinard. A Parameterized Type System
for Race-Free Java Programs. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, 2001.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2002.

[8] G.-I. Cheng, M. Feng, C. Leiserson, K. Randall, and A. Stark.
Detecting Data Races in Cilk Programs that Use Locks. In
ACM Symposium on Parallel Algorithms and Architectures,
1998.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and Precise Datarace Detection for
Multithreaded Object-Oriented Programs. In ACM Confer-
ence on Programming Language Design and Implementation,
2002.

[10] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu,
Robby, W. Visser, and H. Zheng. Tool-supported Program
Abstraction for Finite-state Verification. In ACM/IEEE Inter-
national Conference on Software Engineering, 2001.

[11] T. Elmas, S. Qadeer, and S. Tasiran. A Calculus of Atomic
Actions. In ACM Symposium on Principles of Programming
Languages, 2009.

[12] D. Engler and K. Ashcraft. RacerX: Effective, Static Detec-
tion of Race Conditions and Deadlocks. In ACM Symposium
on Operating Systems Principles, 2003.

[13] C. Flanagan and M. Abadi. Object Types Against Races.
In International Conference on Concurrency Theory, volume
1664 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

[14] C. Flanagan and M. Abadi. Types for Safe Locking. In Eu-
ropean Symposium on Programming, volume 1576 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[15] C. Flanagan and S. N. Freund. Type-based Race Detection for
Java. In ACM Conference on Programming Language Design
and Implementation, 2000.

[16] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomic-
ity Checker for Multithreaded Programs. In ACM Symposium
on Principles of Programming Languages, 2004.

[17] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In ACM Conference on Program-
ming Language Design and Implementation, 2009.

[18] C. Flanagan and S. Qadeer. A Type And Effect System For
Atomicity. In ACM Conference on Programming Language
Design and Implementation, 2003.

[19] C. Flanagan and S. Qadeer. Types for Atomicity. In ACM
Workshop on Types in Language Design and Implementation,
2003.

[20] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modu-
lar Verification of Multithreaded Programs. Theoretical Com-
puter Science, 338(1–3), 2005.

[21] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A
Sound And Complete Dynamic Atomicity Checker for Mul-
tithreaded Programs. In ACM Conference on Programming
Language Design and Implementation, 2008.

[22] P. Godefroid. Model Checking for Programming Languages
Using Verisoft. In ACM Symposium on Principles of Pro-
gramming Languages, 1997.

[23] D. Grossman. Type-Safe Multithreading in Cyclone. In ACM
Workshop on Types in Language Design and Implementation,
2003.

[24] T. A. Henzinger, R. Jhala, and R. Majumdar. Race Checking
by Context Inference. In ACM Conference on Programming
Language Design and Implementation, 2004.

[25] B. H. Liskov and J. M. Wing. A Behavioral Notion of Sub-
typing. ACM Transactions on Programming Languages and
Systems, 16(6), 1994.

[26] B. Lucia and L. Ceze. Finding Concurrency Bugs with
Context-Aware Communication Graphs. In ACM/IEEE Inter-
national Symposium on Computer Architecture, 2009.

[27] J.-P. Martin, M. Hicks, M. Costa, P. Akritidis, and M. Cas-
tro. Dynamically Checking Ownership Policies in Concurrent
C/C++ Programs. In ACM Symposium on Principles of Pro-
gramming Languages, 2010.

[28] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and
I. Neamtiu. Finding and Reproducing Heisenbugs in Concur-
rent Programs. In USENIX Symposium on Operating Systems
Design and Implementation, 2008.

[29] M. Naik and A. Aiken. Conditional Must Not Aliasing for
Static Race Detection. In ACM Symposium on Principles of
Programming Languages, 2007.

[30] M. Naik, A. Aiken, and J. Whaley. Effective Static Race
Detection for Java. In ACM Conference on Programming
Language Design and Implementation, 2006.

[31] M. G. Nanda and S. Ramesh. Pointer Analysis of Multi-
threaded Java Programs. In ACM Symposium on Applied
Computing, 2003.

[32] C.-S. Park and K. Sen. Randomized Active Atomicity Vio-
lation Detection in Concurrent Programs. In ACM Interna-
tional Symposium on the Foundations of Software Engineer-
ing, 2008.

[33] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
Context-Sensitive Correlation Analysis for Race Detection.
In ACM Conference on Programming Language Design and
Implementation, 2006.

[34] R. Rugina and M. C. Rinard. Pointer Analysis for Structured
Parallel Programs. ACM Transactions on Programming Lan-
guages and Systems, 25(1), 2003.

[35] A. Salcianu and M. Rinard. Pointer and Escape Analysis for
Multithreaded Programs. In ACM Symposium on Principles
and Practice of Parallel Programming, 2001.

[36] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Data Race Detector for Multi-
threaded Programs. ACM Transactions on Computer Systems,
15(4), 1997.

[37] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java
Grande Benchmark Suite. In ACM/IEEE International Con-
ference for High Performance Computing and Networking,
2001.

[38] N. Sterling. A Static Data Race Analysis Tool. In USENIX
Winter Technical Conference, 1993.

[39] D. F. Sutherland and W. L. Scherlis. Composable Thread
Coloring. In ACM Symposium on Principles and Practice of
Parallel Programming, 2010.

[40] W. Visser, G. P. B. Klaus Havelund, and S. Park. Model
Checking Programs. In IEEE/ACM International Conference
on Automated Software Engineering, 2000.

[41] C. von Praun and T. Gross. Object Race Detection. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2001.

[42] C. von Praun and T. R. Gross. Static Conflict Analysis for
Multi-Threaded Object-Oriented Programs. In ACM Confer-
ence on Programming Language Design and Implementation,
2003.

[43] J. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detec-
tion on Millions of Lines of Code. In ACM International Sym-
posium on the Foundations of Software Engineering, 2007.

[44] L. Wang and S. D. Stoller. Accurate and Efficient Runtime
Detection of Atomicity Errors in Concurrent Programs. In
ACM Symposium on Principles and Practice of Parallel Pro-
gramming, 2006.

[45] B. P. Wood, J. Devietti, L. Ceze, and D. Grossman. Code-
Centric Communication Graphs for Shared-Memory Multi-
threaded Programs. Technical Report UW-CSE-09-05-02,
University of Washington, 2009.

[46] E. Yahav. Verifying Safety Properties of Concurrent Java Pro-
grams Using 3-value Logic. In ACM Symposium on Principles
of Programming Languages, 2001.

[47] J. Yu and S. Narayanasamy. A Case for an Interleaving
Constrained Shared-Memory Multi-Processor. In ACM/IEEE
International Symposium on Computer Architecture, 2009.

[48] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking. In
ACM Symposium on Operating Systems Principles, 2005.

[49] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In International Sym-
posium on High-Performance Computer Architecture, 2007.

